Università degli Studi dell'Insubria Insubria Space

InsubriaSPACE - Thesis PhD Repository >
Insubria Thesis Repository >
01 - Tesi di dottorato >

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10277/477

Autori: Kengni Jotsa, Antoine Celestin
Tutor non afferente all'Università: PENNATI, VINCENZO ANGELO
Titolo: Solution of the 2D Navier-Stokes equations by a new FE fractional step method.
Abstract: In this work, a mathematical and numerical approach for the solution of the 2D Navier-Stokes equations for incompressible fluid flow problems is investigated. A new flux conservative technique for the solution of the elliptic part of the equations is formulated. In the new model, the non linear convective terms of the momentum equations are approximated by means of characteristics and the spatial approximations, of equal order, are obtained by polynomials of degree two. The advancing in time is afforded by a fractional step method combined with a suitable stabilization technique so that the Inf-Sup condition is respected. In order to keep down the computational cost, the algebraic systems are solved by an iterative solver (Bi-CGSTAB) preconditioned by means of Schwarz additive scalable preconditioners. The properties of the new method are verified carrying out several numerical tests. At first, some elliptic, parabolic and convective-diffusive problems are solved and discussed, then the results of some time dependent and stationary 2D Navier-Stokes problems (in particular the well known benchmark problem of the natural convection in a square cavity) are discussed and compared to those found in the literature. Another, potentially very important application of the numerical tools developed, regards the solution of 1D Shallow-Water equations. In fact the use of the fractional steps scheme for advancing in time and the finite elements (of different polynomial degrees) for the spatial approximation, makes the above mentioned approach computationally profitable and convenient for real applications. The efficiency and accuracy of the numerical model have been checked by solving a theoretical test. Finally, a brief description of the software suitably developed and used in the tests conclude the thesis.
Parole chiave: 2D Navier-Stokes, passi frazionari, elementi finiti, 1D Shallow-Water, egual ordine pressione-velocità, stabilizzazione, conservazione dei flussi, precondizionatore di Schwarz.
Data: 2012
Lingua: eng
Corso di dottorato: Matematica del Calcolo: Modelli, Strutture, Algoritmi e Applicazioni 
Ciclo di dottorato: 24
Università di conseguimento titolo: Università degli Studi dell'Insubria
Citazione: Kengni Jotsa, A.C.Solution of the 2D Navier-Stokes equations by a new FE fractional step method. (Doctoral Thesis, Università degli Studi dell'Insubria, 2012).

Full text:

File DimensioniFormatoConsultabilità
Phd_thesis_kengnijotsa_completa.pdf3,09 MBAdobe PDFVisualizza/apri

Questo documento è distribuito in accordo con Licenza Creative Commons
Creative Commons

Tutti i documenti archiviati in InsubriaSPACE sono protetti da copyright. Tutti i diritti riservati.

Segnala questo record su




Stumble it!



  ICT Support, development & maintenance are provided by the AePIC team @ CILEA. Powered on DSpace Software.  Feedback