Università degli Studi dell'Insubria Insubria Space

InsubriaSPACE - Thesis PhD Repository >
Insubria Thesis Repository >
01 - Tesi di dottorato >

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10277/730

Autori: Noce, Lucia
Tutor interno: GALLO, IGNAZIO
Titolo: Document image classification combining textual and visual features.
Abstract: This research contributes to the problem of classifying document images. The main addition of this thesis is the exploitation of textual and visual features through an approach that uses Convolutional Neural Networks. The study uses a combination of Optical Character Recognition and Natural Language Processing algorithms to extract and manipulate relevant text concepts from document images. Such content information are embedded within document images, with the aim of adding elements which help to improve the classification results of a Convolutional Neural Network. The experimental phase proves that the overall document classification accuracy of a Convolutional Neural Network trained using these text-augmented document images, is considerably higher than the one achieved by a similar model trained solely on classic document images, especially when different classes of documents share similar visual characteristics. The comparison between our method and state-of-the-art approaches demonstrates the effectiveness of combining visual and textual features. Although this thesis is about document image classification, the idea of using textual and visual features is not restricted to this context and comes from the observation that textual and visual information are complementary and synergetic in many aspects.
Parole chiave: Document image classification, convolutional neural network, natural language processing
Data: 2016
Lingua: eng
Corso di dottorato: Informatica e matematica del calcolo
Ciclo di dottorato: 29
Università di conseguimento titolo: Università degli Studi dell'Insubria
Citazione: Noce, L.Document image classification combining textual and visual features. (Doctoral Thesis, Università degli Studi dell'Insubria, 2016).

Full text:

File Descrizione DimensioniFormatoConsultabilità
Phd_Thesis_Nocelucia_completa.pdftesto completo tesi13,08 MBAdobe PDFVisualizza/apri

Questo documento è distribuito in accordo con Licenza Creative Commons
Creative Commons

Tutti i documenti archiviati in InsubriaSPACE sono protetti da copyright. Tutti i diritti riservati.

Segnala questo record su




Stumble it!



  ICT Support, development & maintenance are provided by the AePIC team @ CILEA. Powered on DSpace Software.  Feedback