Università degli Studi dell'Insubria Insubria Space
 

InsubriaSPACE - Thesis PhD Repository >
Insubria Thesis Repository >
01 - Tesi di dottorato >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10277/849

Authors: Spanu, Davide
Internal Tutor: RECCHIA, SANDRO
Title: Development of nanostructured supported photocatalysts for hydrogen production and inorganic pollutants removal
Abstract: Semiconductor photocatalysis has emerged as one of the most promising approach to exploit a renewable energy source (i.e. sunlight irradiation) for several environmental purposes such as the production of clean energy (e.g. photocatalytic H2 evolution), the removal of organic and inorganic pollutants in natural water, purification of air and antibacterial activity. In view of these recent trends, the focus of this thesis was directed towards the study of different supported photo(electro)catalytic materials for topical environmental applications: i) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with a well-defined stacked co-catalyst (a WO3 layer decorated with Pt NPs); ii) Photocatalytic hydrogen gas evolution from aqueous solutions under UV light irradiation (365 nm) over highly ordered TiO2 nanotubes decorated through a sputtering/dewetting approach with dewetted-alloyed NiCu nanoparticles; iii) Photocatalytic reduction/scavenging of inorganic mercury (Hg(II)) from water under solar light irradiation over templated-dewetted Au on TiO2 nanotubes; iv) Photoelectrocatalytic oxidation/abatement of inorganic arsenic (As(III)) over hematite-based photoanodes under solar light irradiation. After a general introduction about photocatalytic processes and materials, each chapter of this dissertation contains the outcomes of the above listed studies.
Keywords: Photocatalysis, TiO2, hematite, arsenic, mercury, hydrogen evolution
Subject MIUR : CHIM/01 CHIMICA ANALITICA
Issue Date: 2019
Language: eng
Doctoral course: Scienze chimiche e ambientali
Academic cycle: 31
Publisher: Università degli Studi dell'Insubria
Citation: Spanu, D.Development of nanostructured supported photocatalysts for hydrogen production and inorganic pollutants removal (Doctoral Thesis, Università degli Studi dell'Insubria, 2019).

Files in This Item:

File Description SizeFormatVisibility
PhD_Thesis_SpanuDavide_completa.pdftesto completo tesi13,12 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons


Items in InsubriaSPACE are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

  ICT Support, development & maintenance are provided by the AePIC team @ CILEA. Powered on DSpace Software.  Feedback